Towards a Semantic Systems Biology: Biological Knowledge Management Using Semantic Web Technologies

Erick Antezana

<erick.antezana@gmail.com>

BioHackathon -Tokyo, 8 Sept. 2010

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Contents

- 1. Introduction
 - Motivation
 - Background
- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Motivation

- Amount of data generated in the biological experiments continues to grow exponentially
- Shortage of proper approaches or tools for analysing this data has created a gap between raw data and knowledge
- Lack of a structured documentation of knowledge leaves much of the data extracted from these raw data unused
- Differences in the technical languages used (synonymy and polysemy) have complicated the analysis and interpretation of the data

Question

What is the potential of the Semantic Web technologies for biological knowledge management in the context of a Systems Biology approach?

Strategy

- Steps:
 - Problem definition: test bed case (cell cycle)
 - Data scaffold elements: standards, terminologies and ontologies
 - Development of tools

- Data integration and exploitation
- Beyond cell cycle: all processes in the Gene Ontology

Background

- Data vs. Knowledge Information?
- Knowledge Management
 - Capturing, structuring, retaining and reusing
 - Data integration (e.g. identity crisis)
 - Warehouse
 - Data federation

Knowledge Representation (KR)

- A formalism should
 - represent real world entities (in/tangible)
 - enable efficient organisation and processing of information
 - enable shareability
- Components
 - language
 - modelling principles
- Interoperability
 - syntax (symbols + rules)
 - semantics (meaning)

Same term, different concepts

- "apex"
 - The apical meristem or its remnant on a flower
 - Tip of the spire of the shell of a gastropod
 - A town in North Carolina
 - A company building airplanes

Ontology

- What is it? (too many definitions)
 - Most cited definition: "A formal specification of a conceptualisation" (Gruber, 1995)
- Computer scientist
 - A specific artefact designed with the purpose of expressing the *intended meaning* of a (shared) vocabulary
 - Bio-ontologist: "A controlled vocabulary of biological terms and their relations" (e.g. GO, RO, PO).
- Why do we need them?
 - Share and reuse information (common terminology)
 - Data integration
 - Other applications (e.g. analysis, annotation)
- Multidisciplinary teams: philosophers, computer scientists, domain experts (biologists), ...

Semantic Web

- "Next generation of the current web"
- Goal: machine understandable content
- Keyword search will get obsolete Complex query formulation
- Still a vision (technology under development)
- Life scientists are very interested
 - Health Care and Life Sciences (HCLS IG W3C)
 - Several meetings, consortia, investments, etc.

Project	Keywords	Technologies	Website	
LinkHub	document ranking, text categorisation, query corpus	RDF	http://hub.gersteinlab.org/	
Lipid bibliosphere	lipids, metabolites, reasoning	OWL		
Neurocommons	uniform access, package-based distribution	RDF, SPARL	http://neurocommons.org/	
RDFScape	systems biology, cytoscape, reasoning	RDF, SPARL	http://www.bioinformatics.org/rdfscape	
S3DB	lung cancer, omics	RDF	http://www.s3db.org/	
SWAN - AlzPharm	neuromedicine, alzheimer, neurodegenerative disorders	RDF, OWL	http://swan.mindinformatics.org	
SEMMAS	web services, intelligent agents	OWL	http://semmas.inf.um.es/prototypes/bioinformatic s.html	
SOMWeb	distributed medical communities	RDF, OWL	http://www.cs.chalmers.se/proj/medview/somweb	
Thea-online	protein interactions, annotations, pathways	RDF, SPARL	http://bioinfo.unice.fr:8080/thea-online/	
yOWL	yeast, phenotypes, interactions	OWL	http://ontology.dumontierlab.com/yowl-hcls 12	

Project	Keywords	Technologies	Website
Bio2RDF	mashup, linked data, global warehouse, complex queries	RDF, SPARQL	http://bio2rdf.org/
BioDash	disease, compounds, therapeutic model, pathway	RDF, OWL	http://www.w3.org/2005/04/swls/BioDash/Demo/
BioGateway	emantic systems biology, hypothesis generation	RDF, SPARQL	http://www.semantic-systems-biology.org/biogateway/
CardioSHARE	collaborative, distributed knowledgebase, reasoning, web services	RDF, SPARQL	http://cardioshare.icapture.ubc.ca/
Cell Cycle Ontology (CCO)	cell cycle, protein-protein interactions, reasoning, ontology patterns	RDF, OWL, SPARQL	http://www.cellcycleontology.org/
CViT	cancer, tumor, gene-protein interaction networks	RDF	https://www.cvit.org/
FungalWeb	fungal species, enzyme substrates, enzyme modifications, enzyme retail	OWL	
GenoQuery	genomic warehouse, mixed query, tuberculosis	RDF, SPARQL	http://www.lri.fr/~lemoine/GenoQuery/
HCLS W3C	knowledge base, life sciences, prototype	RDF, OWL, SPARQL	http://www.w3.org/TR/hcls-kb/
Kno.e.sis	nicotine dependence, biological pathway	RDF, SPARQL, OWL	http://knoesis.wright.edu/research/semsci/application_ domain/sem_life_sci/bio/research/
Linked Life Data	pathways, interactions	OWL	http://www.linkedlifedata.com

Contents

1. Introduction

- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Contents

1. Introduction

2. The Cell Cycle Ontology

- A knowledge base for cell cycle elucidation Antezana E. et al. Genome Biology, 2009
- http://www.cellcycleontology.org

3. BioGateway

- 4. Concluding remarks
- 5. Future prospects

The Cell Cycle Ontology in a nutshell

- Capture knowledge of the Cell Cycle process
- "Dynamic" aspects of terms and their interrelations
- Promote sharing, reuse and enable better computational integration with existing resources
- Issues: synonymy, polysemy

ORGANISMS:

Users:

- Molecular biologist
- Bioinformatician /Computational Systems Biologist
- General audience

Antezana E. et al. Lect. Notes Bioinformatics, 2006

Knowledge representation in CCO

- Why OBO?
 - "Human readable"
 - Standard
 - Tools (e.g. OBOEdit)
 - http://obo.sourceforge.net
- Why OWL?
 - Web Ontology Language
 - "Computer readable"
 - Reasoning capabilities vs. computational cost ratio
 - Formal foundation (Description Logics)
 - Tools (e.g. Protégé)
- OBO2OWL mapping
 - ONTO-PERL (Antezana E. et al. Bioinformatics 2008)

CCO sources

- Ontologies
 - Gene Ontology (GO)
 - Relationships Ontology (RO)
 - Molecular Interactions (MI)
 - Upper level ontology (ULO)
- Data sources •
 - SWISS-PROT
 - GOA files
 - PPI: IntAct
 - Orthology (Decypher)

	Ontology				
Type of proteins	At	Hs	Sc	Sp	CCO
Core cell cycle	162	870	602	749	2383
Added from IntAct	70	1067	2542	109	3788
Modified proteins added					
from UniProt	27	4577	8291	486	17985
TOTAL	259	6514	11435	1344	24156

The Open Biomedical Ontologies

	Ontology				
Entity	At	Hs	Sc	Sp	CCO
Proteins	2958	15742	1996	12914	33610
Genes	2100	3919	3474	1246	10739
Orthology types	—	—	—	—	1653

CCO is the composite ontology = At + Hs + Sc + Sp + orthology ; **33610** proteins in CCO

CCO Pipeline

- ontology integration (ONTO-PERL)
- format mapping
- data integration
- data annotation
- consistency checking
- maintenance
- data annotation
- semantic improvement: OPPL
 (Egaña, M., Stevens, R. Antezana, E. OWL-ED, 2008)
- ODP (Egaña, M., Antezana, E., et al. BMC Bioinf. 2008) 19

Sample knowledge in CCO

Exploring CCO (1/2)

Protégé

Cytoscape

visANT

Exploring CCO (2/2)

CCO website (SPARQL)

(a) < (b) <---</p> 5 S- - F 2.2 Present | renderby: NagAsber | more options state | Recept | Bellet | D. Gerry Test. Class: CC0_80002486 http://www.cellovcleontolege.org/entology/iow//CDD/#CDD_E0002466 operted Class Hierarchy + ICO_ADDRESS COLUMNERS · DOL BORNEL motational etterni peridente etterni peridente ALC: NAME OF CALCULATION OF his perfection to the head of the

OWLDoc server

Ontology Look up Service

BioPortal

Advanced Querying

- RDF = **R**esource **D**escription **F**ramework
 - Metadata model: elements = resources
- It allows expressing knowledge about web resources in statements made of triples (basic information unit):

- Subject corresponds to the main entity that needs to be described.
- Predicate denotes a quality or aspect of the relation ٠ between the Subject and Object.
- Example: "The protein **DEL1** is located in the nucleus"
- It "means" something... •

SPARQL*

- Query RDF models (graphs)
- Powerful, flexible
- Its syntax is similar to the one of SQL.
- Virtuoso Open Server
- Example (matching two triples):

?protein sp:is_a sp:CCO_B0000000 .

?protein rdfs:label ?protein_label

CCO 800000 ?protei rdfs:label CCO 80000 ?protein rdfs.tab

* http://www.w3.org/TR/rdf-sparql-query/

Hom	e Updates Download Query Documentation Tools About	© search Search
	OLS BIOPORTAI	
	Home > Query > SPARQL	
Home	SPARQL	
<u>Updates</u> Dowpload	SPARQL stands for SPARQL Protocol and RDF Query Language. It is standardized b	y the <i>RDF Data Access Working Group</i> (DAWG) of the W3C. It
Query	allows for a query to consist of triple patterns, conjunctions, disjunctions, and optional patt	erns.
• SPARQL	Ouerving CCO	
<u>OWL-DL</u>	Quer Ainig Geo	
• <u>OLS</u>	The following form lets you query the Cell Cycle Ontology through a <u>SPARQL endpoint</u> host	ed at <u>Plant Systems Biology</u> department of the <u>Flanders Institut</u>
BioPortal	<u>ror Biotechnology</u> . The underlying triplestore contains over 1 million RDF triples or cell cycle i interactions, proteins, genes, cellular compartments, and so forth, which were collected fro	mormation. This information ranges from processes, m diverse sources (like GO, UniProt, IntAct, etc.), Type your
Documentation Tools	SPARQL query in the following text area, then click on 'Run Query'. A new window with the	results will be opened. In case there is a syntax error in the
About	query, it will be warned to you. (N.B. Recommended browsers: Firefox, Safari, Opera, or Ki	onqueror. IE proposes to save the results instead of displaying
	them.)	
	Character	
	Query:	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""></http:></http:>	-
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""></http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE {</http:></http:></http:>	*
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { 2mrot_entis_e_sp:CC0_B0000000</http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { ?prot_sp:is_a_sp:CC0_B00000000. ?prot_rdfs:label ?prot_name .</http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?hiological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { ?prot_sp:is_a_sp:CC0_B00000000 . ?prot_rdfs:label ?prot_name . ?prot_sp:participates_in ?biological_process .</http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { ?prot_sp:is_a_sp:CC0_B0000000 . ?prot_rdfs:label ?prot_name . ?prot_sp:participates_in ?biological_process . ?biological_process_rdfs:label ?biological_process_name }</http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { ?prot_sp:is_a_sp:CC0_B0000000 . ?prot_rdfs:label ?prot_name . ?prot_sp:participates_in ?biological_process . ?biological_process_rdfs:label ?biological_process_name }</http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { ?prot_sp:is_a_sp:CCO_B00000000 . ?prot_rdfs:label ?prot_name . ?prot_sp:participates_in ?biological_process . ?biological_process_rdfs:label ?biological_process_name }</http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { ?prot_sp:is_a_sp:CCO_B0000000 . ?prot_rdfs:label ?prot_name . ?prot_sp:participates_in ?biological_process . ?biological_process_rdfs:label ?biological_process_name } Run Query_Reset</http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name PROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { ?prot_sp:is_a sp:CCO_B0000000 . ?prot_rdfs:label ?prot_name . ?prot_sp:participates_in ?biological_process . ?biological_process_rdfs:label ?biological_process_name } Run Query Reset</http:></http:></http:>	
	Query: PREFIX rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""> PREFIX sp:<http: ontology="" rdf="" sp#="" www.cellcycleontology.org=""> SELECT ?prot_name ?biological_process_name FROM <http: ontology="" rdf="" sp="" www.cellcycleontology.org=""> WHERE { ?prot_sp:is_a_sp:CC0_B0000000 . ?prot_rdfs:label ?prot_name . ?prot_sp:participates_in ?biological_process . ?biological_process_rdfs:label ?biological_process_name } Run Query Reset SPARQL queries against CCO are run on <u>Virtuoso (OpenLink)</u>. This system provides an infra-</http:></http:></http:>	structure for storing and querying CCO.

prot_name	biological_process_name
UBC11_SCHPO	G2%2FM transition of mitotic cell cycle
UBC11_SCHPO	cell cycle
UBC11_SCHPO	mitosis
UBC11_SCHPO	mitotic metaphase%2Fanaphase transition
UBC11_SCHPO	regulation of mitotic cell cycle
UBC11_SCHPO	cyclin catabolic process
SRW1_SCHPO	cell cycle
SRW1_SCHPO	cyclin catabolic process
SRW1_SCHPO	activation of anaphase-promoting complex during mitotic cell cycle
SRW1_SCHPO	cell cycle arrest in response to nitrogen starvation
SRW1_SCHPO	negative regulation of cyclin-dependent protein kinase activity
DYHC_SCHPO	dhc1-peg1-1 physical interaction
DYHC_SCHPO	synapsis
DYHC_SCHPO	meiotic recombination
DYHC_SCHPO	horsetail nuclear movement
ORB6_SCHPO	cell morphogenesis checkpoint
ORB6_SCHPO	regulation of cell cycle
DED1_SCHPO	G2%2FM transition of mitotic cell cycle 27

Reasoning over CCO

- OWL-DL: balance tractability with expressivity
- Consistency checking: no contradictory facts
- Classification: implicit2explicit knowledge
- Tools: Protégé, Reasoners (e.g. RACER, Pellet)
- Sample Query
 - "Which cell cycle related proteins participate in a reported interaction?"

protein and participates_in some interaction

Cellular localization checks

 Query: "If a protein is cell cycle regulated, it must not be located in the chloroplast (IDEM: mitochondria)" (RACER*)

29

Conclusions

- Adequate knowledge representation:
 - enables automated reasoning (many inconsistencies were detected)
 - simple biological hypothesis generation
- Data integration based on trade-offs (e.g. multiple inheritance)
- Performance issues (technology limitations)

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
- 3. BioGateway

- An integrative approach for supporting Semantic Systems Biology Antezana et al. BMC Bioinformatics, 2009
- http://www.SematicSystemsBiology.org
- Concluding remarks
 Future prospects

BioGateway

- From "cell cycle" to the entire set of processes in the Gene Ontology
- CCO: deep downwards (coverage)
- **BioGateway:** broad coverage
- BioGateway's goal: build "complex" queries over the entire set of organisms annotated by the GOA
- Support a Semantic Systems Biology approach

Systems Biology

- Yet another definition
- Key: system
- What is a system?
- System =
 - set of elements,
 - dynamically interrelated,
 - having an activity,
 - to reach an objective (sub-aims),
 - INPUT: data/energy/matter
 - OUTPUT: information/energy/matter

Systems Biology (cont)

- "A system (and its properties) cannot be described in terms of their terms in isolation; its comprehension emerges when studied globally"
- Systems Biology = Approach to study biological systems.
- Arbitrary borders
- A system within a system

Systems Biology (cont)

- Types of systems biology:
 - "Standard/Classical" Systems Biology (Kitano, Science 2002. Sauer et al, Science 2007)
 - Translational Systems Biology (Vodovotz, PLoS Comp Biol 2008)
 - Semantic Systems Biology (Antezana et al, Briefings in Bioinformatics 2009)

Semantic Systems Biology

- Semantic?
 - New emerging technologies for analyzing data and formalizing knowledge extracted from it
- A new paradigm elements:
 - Knowledge representation
 - Reasoning ==> hypothesis
 - Querying

BioGateway: a tool to support Semantic Systems Biology

- Automatic data integration pipeline (~8 months)
- Quick query results: performance, choice: "tuned" RDF (no OWL), 1 graph per resource
- Human "readable" output:
 - labels, no IDs or URI...
- Good practice:
 - Standards (RDF) => orthogonality, …
 - Representation issues (e.g. n-ary relations)

Transitive closure:

– is_a (subsumption relation), part_of (partonomy)

Transitive closure graphs

- If A part_of B, and B part_of C, then A part_of C is also added to the graph.
- Many interesting queries can be done in a performant way with it, like 'What are the proteins that are located in the cell nucleus or any subpart thereof?'
- The graphs **without** transitive closure are available for querying as well.

Blondé, W., Antezana E. et al. ICBO, 2009

BioGateway pipeline

- 1 Swiss-Prot file, the section of UniProt KB of proteins
- 1 NCBI file with the taxonomy of organisms
- 1 Metaonto file with information about OBO Foundry ontologies
- **2 Metarel** files with relation type properties
- 5 CCO files with integrated information about cell cycle proteins
- 44 OBO Foundry files with diverse biomedical information + Transitive Closure
- **51 Transitive Closure** files to enhance query abilities
- **893 GOA** files with GO annotations

BioGateway holds ~175 million RDF triples!!!

40

Sample RDF-ication: GOA

UniProtKB 003042 003042 GO:0000287 GOA:spkw|GO_REF:0000004 IEA

- **Protein:** *Ribulose bisphosphate carboxylase large chain* (O03042)
- GO term (MF): Magnesium Ion Binding (GO:0000287)
- Therefore, O03042 has the molecular function of binding magnesium ion.
- This fact is supported by IEA, that is, Inferred from Electronic Annotation."

A library of queries*

- The drop-down box contains 35 queries:
 - 14 protein-centric biological queries:
 - The role of proteins in diseases
 - Their interactions
 - Their functions
 - Their locations
 - ...

. . .

- 21 ontological queries:
 - Browsing abilities in RDF like getting the neighborhood, the path to the root, the children,...
 - Meta-information about the ontologies, graphs, relations
 - Queries to show the possibilities of SPARQL on BioGateway, like counting, filtering, combining graphs,...
 - * http://www.semantic-systems-biology.org/biogateway/querying

SPARQL - Mozilla Firefox

<pre>le Edit View Higtory Bookmarks Tools Help le Edit View Higtor Bookmarks Tools Help Higtory Bookmarks le Edit View Higtor Bookmarks Tools Help Higtory Bookmarks le Edit View Higtor Bookmarks Tools Help Higtory Bookmarks le Edit View Higtory Bookmarks Tools Help Higtory Bookmarks le Edit View Higtory Bookmarks Tools Help Higtory Bookmarks le Edit View Higtory Bookmarks Tools Help Higtory Bookmarks le Edit View Higtory Bookmarks Tools Help Higtory Bookmarks le Edit View Higtory Bookma</pre>		SPARQL - Mozilla Firefox	
Image: Some and the proteins that are involved in two specific diseases. Sample queries: Bio 10. Get all the proteins that are involved in two specific diseases. Image: Parameteries: Bio 10. Get all the proteins that are involved in two specific diseases. Image: Parameteries: Bio 10. Get all the proteins that are involved in two specific diseases Image: Parameteries: Image: Parameteries: <t< th=""><th>le</th><th><u>E</u>dit <u>V</u>iew Hi<u>s</u>tory <u>B</u>ookmarks <u>T</u>ools <u>H</u>elp</th><th></th></t<>	le	<u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
Sample queries: Bio 10. Get all the proteins that are involved in two specific diseases. # PARAMETER: [C] ardiovascular: # FUNITION # FUNITION # FUNITION # FUNITION # for the proteins all the proteins that are involved in two # for the protein response biology.org/> PREFIX rdfs: (http://www.semantic-systems-biology.org/SSB#> SELECT distinct ?protein_id ?protein_name ?diseasel ?disease2 @ptional WHERE { @GRAPH GRAPH @rotein_id ssb: disease ?disease2. ?protein_id ssb: disease?disease2. ?protein_id ssb: disease?disease3.<	1	🖙 🔹 🚱 🚷 🚷 http://www.semantic-systems-biology.org/biogateway/querying 😭 💌 💽 🗸 Google	0
		Sample queries: Bio 10. Get all the proteins that are involved in two specific diseases. Query: # PARAMETER: [Cc]ardiovascular: the first disease # PARAMETER: [Cc]ardiovascular: the first disease # PARAMETER: [Cd]iabetes: the second disease # PARAMETER: [Cd]iabetes: the second disease # PARAMETER: [Cd]iabetes: the second disease BASE	

0			SPARQL - Mozilla Firefox				_ x
<u>File Edit View History B</u>	ookmarks	<u>T</u> ools <u>H</u> elp					144 144 144
🗢 🔿 🔹 🚱 😧 🤗	htt	p://www.semantic-sys	stems-biology.org/biogateway/querying		ର 🔹 💽	Google	0
		http://crunch.fvm:	Mozilia Firefox	oriasis_proteins%0A%2	3 PARAMETER%:		-
		protein name	disease description	interacts with	encoded by		
The results appear in a separate window	Home SP. Bio Bio The fe Syste RDF Anno your s case	1C06_HUMAN	Genetic variation in HLA-C is associated with susceptibility to psoriasis 1 (PSORS1) [MIM%3A177900]. Psoriasis is a chronic inflammatory dermatosis that affects approximately 2% of the population. It is characterized by red, scaly skin lesions that are usually found on the scalp, elbows, and knees, and may be associated with severe arthritis. The lesions are caused by hyperproliferative keratinocytes and infiltration of inflammatory cells into the dermis and epidermis. The usual age of onset of psoriasis is between 15 and 30 years, although it can present at any age				
	Record N.B. go to Samp Bio Quen # N # P # F # # BAS PRE	NALP1_HUMAN	Genetic variations in NLRP1 gene are associated with susceptibility to vitiligo- associated multiple autoimmune disease type 1 (VAMAS1) [MIM%3A606579]. Vitiligo is an autoimmune skin disorder associated with progressive skin depigmentation. Among patients with generalized vitiligo, there is an increased frequency of several other autoimmune and autoinflammatory diseases, particularly autoimmune thyroid disease, latent autoimmune diabetes in adults, rheumatoid arthritis, systemic lupus erythematosus, psoriasis and Addison disease	ASC_HUMAN	PYCARD		
	PRE SEL WHE G		Genetic variations in NLRP1 gene are associated with susceptibility to vitiligo- associated multiple autoimmune disease type 1 (VAMAS1) [MIM%3A606579]. Vitiligo is an autoimmune skin disorder				
	0 } }	PTIONAL { ?protein_id <u>ssb</u> :int ? <u>interactor ssb</u> :mne ? <u>interactor ssb</u> :enc	eracts_with ? <u>interactor</u> . monic ?interacts_with. oded_by ?encoded_by.	UNION GRAPH ORDER BY			-

Conclusions / Results

- BioGateway: RDF store for Biosciences (prototype!)
- Data integration pipeline: BioGateway
- Queries and knowledge sources and system design go hand-in-hand (user interaction)
- Enables building relatively "complex" questions
- Existing integration obstacles due to:
 - diversity of data formats
 - lack of formalization approaches
- Semantic Web technologies add a new dimension of knowledge integration to Systems Biology

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Conclusions and prospects

- Categories:
 - Way of computationally representing biological knowledge
 - Exploitation of such knowledge
- Both gave rise to a new (complementary) form of Systems Biology: Semantic Systems Biology approach
 - Data integration
 - Holistic (systemic) approach
 - Data exploitation (e.g. querying, reasoning)
 - Ultimately, create new hypothesis
- Semantic Web technologies *do* have the potential to provide a sound framework for biological data integration

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Future prospects

- Temporal representation
- Capture non-crisp knowledge (e.g. protein sar1 is usually located in the nuclear membrane)
- Integration of multimedia (images, videos)
- "Deep down" integration of data into BioGateway (like in CCO)
- •

Acknowledgements

- Martin Kuiper (NTNU, NO)
- Vladimir Mironov (NTNU, NO)
- Mikel Egaña (U Manchester, UK / U Murcia, ES)
- Robert Stevens (U Manchester, UK)
- BioHealth Group (U Manchester, UK)
- Ward Blondé (U Ghent, BE)
- Bernard De Baets (U Ghent, BE)
- Alistair Rutherford (UK)
- Alan Ruttenberg (Science Commons, US)
- Ontology and Semantic Web community
- Users, (former/new) colleagues and friends
- ..

http://www.semantic-systems-biology.org

🔅 RESEARCH

Extra slides

Prospective users

- Molecular biologist: interacting components, events, roles that each component play. Hypothesis evaluation.
- Bioinformatician/Computational Systems Biologist: data integration, annotation, modeling and simulation.
- General audience: educational purposes.

Resources

- Open Biomedical Ontologies (OBO)
 - About 60 bio-ontologies (mainly OBOF)
 - OBO Foundry
 - Multidisciplinary teams: philosophers, computer scientists, domain experts (biologists), ...
- Tools (OBO-Edit, Protégé, etc.)
- Data centres (academy/industry) "migrating" towards ontology-aware resources

Format mapping: OBO⇔OWL

- Mapping not totally biunivocal; however, all the data has been preserved.
- Missing properties in OWL relations:
 - reflexivity,
 - asymmetry,
 - Intransitivity, and
 - partonomic relationships.
- Existential and universal restrictions cannot be explicitly represented in OBO => Consider all as existential.
- CCO in OWL is in sync with the NCBO mapping (DL)
- Mapping efforts:
 - http://spreadsheets.google.com/ccc?key=pWN_4sBrd9l1Umn1LN8WuQQ
 - http://www.psb.ugent.be/cbd/cco/OBO2OWL%20Mappings.pdf

OWL restrictions

Restriction on Nucleus: some part_of Cell

Necessary conditions vs Necessary and sufficient conditions

Sample entry in OBO

Sample entry in OWL

<owl:Class rdf:about="http://www.cellcycleontology.org/ontology/owl/CCO#CCO B0002060"> <rdfs:label xml:lang="en">NEB2 HUMAN</rdfs:label> <obolnOwl:hasDefinition> <obolnOwl:Definition> <rdfs:label xml:lang="en">Neurabin-2</rdfs:label> <obolnOwl:hasDbXref> <obolnOwl:DbXref> <rdfs:label>UniProt:Q96SB3</rdfs:label> <obolnOwl:hasURI rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"> http://www.cellcycleontology.org/ontology/owl/UniProt#UniProt Q96SB3 </oboInOwl:hasURI> </oboInOwl:DbXref> </obolnOwl:hasDbXref> </obolnOwl:Definition> </obolnOwl:hasDefinition> <obolnOwl:hasDbXref> <obolnOwl:DbXref> <rdfs:label>UniProt:Q8TCR9</rdfs:label> <obolnOwl:hasURI rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"> http://www.cellcycleontology.org/ontology/owl/UniProt#UniProt Q8TCR9 </oboInOwl:hasURI> </oboInOwl:DbXref> </oboInOwl:hasDbXref> <rdfs:subClassOf rdf:resource="http://www.cellcycleontology.org/ontology/owl/CCO#CCO B0000000"/> <rdfs:subClassOf> <owl:Restriction> <owl:onProperty> <owl:ObjectProperty rdf:about= "http://www.cellcycleontology.org/ontology/owl/CCO#belongs to"/> </owl:onProperty>

OBO2OWL mapping sample

Collars, offratori-"http://www.eulinetianetsticas.erg/web/web/cooking/onetils/-

OWL

CCO checked with...

SWeDE Eclipse plug-in: http://owl-eclipse.projects.semwebcentral.org 63

Checked with...

Protégé: <u>http://protege.stanford.edu/</u>

A reasoner (RACER) was used to identify those inconsistencies

and with...

Vowlidator: http://projects.semwebcentral.org/projects/vowlidator/)

OPPL in CCO

Add a class called "interaction".

Add the following neccesary condition to the newly added "interaction" class:

the participants are only the union of protein_1 and protein_2.

Add the rdfs:label "interaction" to the newly added "interaction" class.

ADD Class interaction; ADD subClassOf has_participant only (protein_1 or protein_2); ADD label "interaction";

Select any class that has the following condition as a superclass: # the participants are only the union of protein_1 and protein_2. # Remove the rdfs:label "interaction" from any selected class. # Add the rdfs:label "interaction of protein 1 and protein 2" to any selected class.

SELECT subClassOf has_participant only (protein_1 or protein_2); REMOVE label "interaction"; ADD label "interaction of protein_1 and protein_2";

> 66 Egaña, M., Stevens, R. Antezana, OWL-ED, 2008

Sample model

Other sample query in OWL

 Entities that are the location of proteins participating in the S-phase (CCO_P0000014) or any process which is part of it.?

```
location_of some (
   participates_in some (
    CCO_P0000014 or (
     part_of some CCO_P0000014)))
```

Initial question (revisited)

"to what extent can current Semantic Web technologies support biological knowledge management for basic or complex querying, for automated reasoning and inferencing, specifically in the context of a Systems Biology approach where integrated knowledge could be utilised to address the relations between components of the cell cycle control mechanism, their involvement in (sub)modules of cell cycle control, and their potential place in overall network topology?"

BioGateway

- Automatic pipeline
 - Run on a regular basis (~6 months)
 - Latest data available (from scratch)
- Uses Virtuoso Open Server
 - Open Source software that can host a triple store
 - Can build this from RDF files
 - Has a DB backend
- Supports SPARQL*

http://www.openlinksw.com/virtuoso/ *http://www.w3.org/TR/rdf-sparql-query/
BioGateway graphs

Each RDF-resource in BioGateway has a **URI** of this form: http://www.semantic-systems-biology.org/SSB#resource_id

Each RDF-graph in BioGateway has a **URI** of this form: http://www.semantic-systems-biology.org/graph_name

All the queries are explained in a tutorial*

1. For Get the proteins with a specific function, location and process for all the annotated organisms.

```
#NAME: get specific proteins
#PARAMETER: GO 0005216: ion channel activity
                                                             For every query the name, the
# PARAMETER: GO_0005764: lysosome
# PARAMETER: GO_0006811: ion transport
                                                           parameters and the function are
# FUNCTION: returns all the proteins with the same function,
                                                                    indicated at the top.
# process and location and the organism in which
# they can be found
BASE <http://www.semantic-systems-biology.org/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
SELECT ?organism ?protein ?protein id
WHERE {
                                                                   The parameters are
 GRAPH ?organism {
                                                                     indicated in red.
  ?protein_id ssb:has_function ssb:GO_0005216.
  ?protein id ssb:located in ssb:GO 0005764.
  ?protein_id ssb:participates_in ssb:GO_0006811.
  ?protein_id rdfs:label ?protein.
FILTER(?organism != <SSB> && ?organism != <GOA>).
Click here to select this query in the drop-down box on the query-page and edit it
Click here to see the results
```

* http://www.semantic-systems-biology.org/biogateway/tutorial

۷				Resources -	Mozilla Fir	refox		_ - - ×	
<u>File Edit View History Bo</u>	okmarks <u>T</u> ools <u>H</u> elp							5	
🗢 ቅ 🔹 🚱 🙆	http://www.sem	antic-systems	-biology.or	없 💌 💽 🗸 Google 🔍					
	Individual rdf files: 1 UniProt - Swiss-Prot 1 NCBI file withthe tax 1 Metaonto file with in	file, the SwissPro conomy of organis formation about O							
	 2 Metarel files with rel 5 CCO files with integ 44 OBO Foundry files 51 Transitive Closure 893 GOA files with Ge 	ation type properti rated information with diverse biom files to enhance o D annotations	es about cell cy edical inforr uery abilitie	998 RDF-files can be downloaded from the Resources page					
The graph	NCBI Graph name	Prefix	Ontology	Name	About		FTP		
names can be used to	s can ed to		NCBI Taxonomy Biol		Biological spe	al species D			
query or combine individual	Metaonto								
graphs for	Graph name	Prefix		Ontology Name		About	FTP		
answers or	metaonto	METAONTO		Metaonto		ontologies	D		
specific	Metarel								
	Graph name	Prefix		Ontology Name		About	FTP		
ľ	biometarel	METAREL		Biometarel		relations	D		
	biorel	rel_type		Biorel		relations	D		
	000			~					
	Graph name	Prefix	Ontology N	lame		About	FTP		
	cco_A_thaliana	CCO	Cell Cycle (Ontology (A.Thaliana))	cell cycle	D		
	CCO_H_sapiens	CCO	Cell Cycle (Untology (H. Sapiens)		cell cycle	D		

The neighbourhood of the human protein 1443F in the RDF-graph

term_as_child	outward_arrow	head_name	tail_name	inward_arrow	term_as_parent		
1433F_HUMAN	participates in	intracellular protein transport					
1433F_HUMAN	participates in	glucocorticoid catabolic process	The resulting triples (arrows are represented as a small grammatical sentence:				
1433F_HUMAN	participates in	positive regulation of transcription					
1433F_HUMAN	participates in	regulation of synaptic plasticity					
1433F_HUMAN	participates in	glucocorticoid receptor signaling pathway					
1433F_HUMAN	participates in	regulation of neuron differentiation					
1433F_HUMAN	participates in	negative regulation of dendrite morphogenesis					
1433F_HUMAN	is located in	cytoplasm					
1433F_HUMAN	has function	protein binding subject, predicate,				ct.	
1433F_HUMAN	has function	transcription activator activity					
1433F_HUMAN	has function	actin binding					
1433F_HUMAN	has function	insulin-like growth factor receptor binding					
1433F_HUMAN	has function	protein domain specific binding					
1433F_HUMAN	has function	glucocorticoid receptor binding					
1433F_HUMAN	has source	Homo sapiens	•				
1433F_HUMAN	interacts with	PARD3_HUMAN					
1433F_HUMAN	interacts with	PFTK1_HUMAN	Outgoing arrows				
1433F_HUMAN	interacts with	RAF1_HUMAN					
1433F_HUMAN	interacts with	GREM1_HUMAN					
1433F_HUMAN	interacts with	MARK4_HUMAN					
1433F_HUMAN	interacts with	PAR6A_HUMAN					
1433F_HUMAN	interacts with	PAR6B_HUMAN					
1433F_HUMAN	interacts with	KPCI_HUMAN					
			PARD3_HUMAN	interacts with	1433F_HUMAN		
			PFTK1_HUMAN	interacts with	1433F_HUMAN		
			RAF1_HUMAN	interacts with	1433F_HUMAN		
	Incoming	arrows	GREM1_HUMAN	interacts with	1433F_HUMAN		
			PAR6A_HUMAN	interacts with	1433F_HUMAN		
			PAR6B_HUMAN	interacts with	1433F_HUMAN		
			KPCI_HUMAN	interacts with	1433F_HUMAN		
			ADA22_HUMAN	interacts with	1433F_HUMAN	76	
			HNRPD_HUMAN	interacts with	1433F_HUMAN		

Principles

- 1. Orthogonality
- 2. A "common language" (e.g. RDF)
- 3. Unique ID + resolution (e.g. purl.org)
- 4. Comply to: ULO (e.g. BFO), RO, ...
- 5. Explicit semantics
- 6. Rich axiomatisation
- 7. Application-driven development (e.g. SB)
- 8. Peer review (community evaluation)
- 9. Tooling (e.g. visualisation)
- 10. Licensing (e.g. CC)

Metarel

- Metarel is a generic ontological hierarchy for relation types, consistent with OBOF and RDF.
- It includes meta-information like transitivity, reflexivity and composition.
- BioMetarel includes all the biological relation types that are used in BioGateway.
- We are still testing the exploitation of composition, like *A located in B* and *B part of C*, gives *A located in C*.

The RDF export specifications

- The RDF is automatically generated with ontoperl, our own ontology API.
- Many choices for the RDF specifications were made during the testing of the queries.
- The resources are available either as part of an integrated graph or as individual graphs.
- BioMetarel, a relation ontology, provides labels for the URIs of the relations.
- OWL(XML/RDF) was avoided because it is too verbose. We preferred RDF optimized for querying.

Next steps

- More data sources (e.g. Nutrigenomics, pathways etc.)
- RDF rules (e.g. RuleML)
- A more user-friendly interface
- Reasoning
- OBO cross products

•

Discussion

- W3C standards limitations (e.g. spatiotemporal information, microarrays experiments)
- **Biological identifiers**: URIs, LSIDs, MIRIAM URIs, etc. *They should be scalable & resolvable.*
- Lack of semantic content: poor axiomatisation, inadequately codified. Use of standard languages (e.g. RDF).
- Adequate tools: not adapted for real-size problems (e.g. reasoning). *Designed with a universal architecture in mind.*

SSB at a community level*

- Semantic bio-content: encourage and facilitate
- Best practices for such creation (standards)
- Mechanism for identifying biological entities
- Bridge semantic technology developers and life scientists (=the users)

Conclusions / Results

- Data integration pipeline: life cycle of the KB
- Existing integration obstacles due to:
 - diversity of data formats
 - lack of formalization approaches
- Reasoning services: inconsistency checks, classification => hypothesis
- Trade-offs: complex queries, representational issues

Current issues

- Temporal & spatial representation

 OBOF not enough...
- Performance (reasoners)

– Huge ontologies

• Weighted knowledge (often, sometimes)

CCO accession number

CCO:[CPFRTIBGOU]nnnnnn

namespace

sub-namespace

- C: cellular component
- P: biological process
 F: molecular function
- R: reference
- **T:** taxon
- I: interaction
- B: protein
- G: gene
- **O:** ortholog
- U: upper-level term

7 digits

Example: CCO: P0000056 +---- "cell cycle"

Upper Level Ontology for Application Ontologies

DIAMONDS platform *

Example: checking the single inheritance principle

- Principle: "No class in a classification should have more than one is_a parent on the immediate higher level" (Smith B. et al.)
- Detect the relationships which violate that rule using a reasoner (RACER*)
- Solution: disjoint among the terms at the same level of the structure
- 32 problems found:
 - 4: "part_of" instead of "is_a"
 - 18: should stay without any change (FP)
 - 10: not consistent (used terminology)

part_of instead of is_a

The sub-ontology on the left has inconsistent relation s_4 (is_a) which has been changed into part_of (right side).

CCO ID	Term				
CCO:P0007049	cell cycle				
CCO:P0000096	centrosome cycle				
CCO:P0000227	regulation of centrosome cycle				
CCO:P0000221	regulation of centriole replication				
CCO:P0000228	negative regulation of centrosome cycle				
CCO:P0000222	negative regulation of centriole replication				